GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

JANUARY 2011

CH4

SECTION A

1.

(a) (i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$ (1)
the blue light is absorbed / there is no yellow light to be reflected / transmitted (1)
equivalent (1)
(b) (i)

(ii) aluminium chloride / iron(III) chloride / correct formulae
(c) (i) The chlorine's (lone pair of) electrons interact with the ring π cloud of electrons (1) making it less polar / stronger bond (1) and therefore less susceptible to nucleophilic substitution (1)
(ii) Any TWO from e.g. ease of manufacture / availability of starting materials / percentage yield / shelf life of product / life of product in use / effectiveness / suitability / range of colours
(d) (i) esters
(ii) reagents iodine / sodium hydroxide OR sodium chlorate(I) / potassium iodide $\mathrm{I}_{2} / \mathrm{NaOH}$ or $\mathrm{OH}^{-} \quad \mathrm{NaClO} / \mathrm{ClO}^{-} / \mathrm{KI}^{-} / \mathrm{I}^{-}$(1)
observation yellow precipitate / solid / crystals (1)
(antiseptic smell is a neutral answer)
2. (a) (i) 3-bromopropene/3-bromoprop-1-ene
(ii) Reagent A (aqueous) sodium hydroxide $/ \mathrm{NaOH} / \mathrm{OH}^{-}$ Reagent B potassium dichromate $/ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
(b) (i) condensation / (nucleophilic) addition - elimination
(ii) red / yellow / orange solid (a solid must be implied)
(iii) take its melting temperature, compare this with known values
(iv) Displayed formula

Type of reaction
oxidation / redox
(c) (i) Both carbon atoms of the double bond need to have different atoms / groups attached to them
(ii) Reagent iron(III) chloride / $\mathrm{FeCl}_{3} \mathrm{OR}$ aqueous bromine (1) Observation purple/blue/green colour white precipitate (1) [2]
(iii) It is shown by compounds that have the same structural formula but where their bonds take up different positions in space
(do not accept descriptions of geometrical/optical isomerism)
3. (a) (i) Chromophore
(ii)

The sodium ions are attracted to the δ - oxygen atom of a water molecule
(iii) I $0-10^{\circ} \mathrm{C} /<10^{\circ} \mathrm{C}$

II (An ion that is) an electron pair acceptor / seeks out an electron rich site
(accept an electron deficient group/species)
(b) (i) Brilliant Blue FF (1) as it has R_{f} value 0.80 and this has been identified on the chromatogram (1) must have the correct deduction, either 2 or 0 here
(ii) Any TWO from e.g. repeat the chromatography using a different solvent / take its visible spectrum and compare its $\lambda_{\max }$ with those of the two dyes / take its infrared spectrum and compare with the spectrum of the two dyes / take its NMR spectrum and compare its spectrum with the NMR spectrum of each individual dye (1), (1)
(c) $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}\right)_{2} \mathrm{Ca}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3}+2 \mathrm{C}_{2} \mathrm{H}_{6}$ correct balancing (1) correct formula of ethane (1)
(d)

polarisation (1)
hydrogen bonding (1)
[2]
(e)

accept the formula with Na^{+}ions
(f)

SECTION B

4. (a) (i)

(ii) To remove soluble impurities
(iii) The impure crystals are added to the minimum quantity of hot water / added to sufficient cold water and heated until all the crystals just dissolve / OWTTE (1) filter hot (1)
Allow the mixture to cool (1)
The product is then filtered (1) (washed) and dried in an oven at a temperature $<113{ }^{\circ} \mathrm{C}$ / accept other drying methods that imply the temperature is $<113{ }^{\circ} \mathrm{C}$ (1)

QWC Information organised clearly and coherently, using specialist vocabulary when appropriate
(b) (i)

(1)

(1) (Wheland) intermediate
(1) products
electrophilic substitution (1)
(ii) Since the 2-isomer is yellow (1) and the 4-isomer is colourless; when the 4-isomer is colourless / 'not yellow' then the 4-isomer is no longer contaminated (1)
(iii) Moles of N -phenylethanamide $=\frac{8.10}{135}=0.060$

Moles of the 4-isomer $=\frac{6.48}{180}=0.036$

$$
\begin{equation*}
\% \text { Yield } \quad=\frac{0.036 \times 100}{0.060}=60 .(0) \tag{3}
\end{equation*}
$$

(c) (i) Potassium manganate(VII) / permanganate / KMnO 4_{4}
(ii) To convert the (sodium) salt back to the (parent) acid
(d)

in condensation polymerisation a small molecule / water is lost / produced (1)
5. (a) (i) Hydrogen cyanide ionises/dissociates (giving a hydrogen ion / H^{+}and a cyanide ion / CN^{-}) (1)
(The mechanism is described as nucleophilic addition) because the CN^{-}ion acts as a nucleophile / base / electron pair donor (attacking (accept 'approaches') a $\delta+$ site) (1)
Electron density increases / negative charge produced on the oxygen atom (1)
This oxygen atom acts as an electron pair donor, attracting a hydrogen ion (1)
In effect a molecule of hydrogen cyanide has added across the carbon to oxygen double bond (1)
(Accept any four correct points)
QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning
(ii) Hydrolysis is a reaction with water (or a water containing reagent), where water 'splits' the 'organic molecule (1)
In this reaction, hydrochloric / (dilute) sulfuric acid is used (1)
(b) (i) Number of moles of sodium hydroxide $=\underline{20.00 \times 0.250}=0.005$ 1000

Number of moles of lactic acid $=0.005$
Mass of lactic acid $=0.005 \times 90=0.45 \mathrm{~g}$ (1)
Percentage of lactic acid in the yoghurt $=\frac{0.45 \times 100}{50}=0.90$ (1)
(ii) It would produce a much smaller titre and this will lead to larger \% errors - both statements required
(c) The dione does not react with Fehling's reagent (1)

The dial produces a brown solid (1)
(d) Molecular formula must be $\frac{172}{43}=4 \quad \therefore \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{4}$

All oxygen atoms in ester group(s) - each ester group needs two oxygen atoms
$\therefore 2$ ester groups (1)
Decolourises aqueous bromine $\quad \therefore \quad C=C$
Gives methanol as the only alcohol on hydrolysis \therefore methyl ester
${ }^{1}$ H NMR suggests each signal $\equiv 6$ protons, 'remotely bonded' (1)
Ester is

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter

Total [20]
Section B Total [40]

